Difference between revisions of "Tema 2. Espais vectorials"

From Potatopedia
(Afegit més contingut dels apunts)
(Més apunts copiats)
Line 38: Line 38:
{{Collapse bottom}}
{{Collapse bottom}}


{{Collapse top|left=true|title=Exemple: Comproveu que les operacions suma i producte estan ben definides a <math>\frac{\mathbb{Z}}{n\mathbb{Z}}</math>}}
{{Collapse top|left=true|title=Exercici: Comproveu que les operacions suma i producte estan ben definides a <math>\frac{\mathbb{Z}}{n\mathbb{Z}}</math>}}
<math>\begin{cases} \bar{a} + \bar{b} = \overline{a+b} \\
<math>\begin{cases} \bar{a} + \bar{b} = \overline{a+b} \\
\bar{a} \cdot \bar{b} = \overline{a \cdot b} \end{cases} en \frac{\mathbb{Z}}{n\mathbb{Z}}</math>
\bar{a} \cdot \bar{b} = \overline{a \cdot b} \end{cases} en \frac{\mathbb{Z}}{n\mathbb{Z}}</math>
Line 62: Line 62:


<math>\text{Si } \overline{a} \text{ fos invers de 2} \Rightarrow \overline{a} \cdot \overline{2} = \overline{1}</math>, és a dir, <math>a \cdot 2 = 1 + \lambda \cdot 6</math>: <u>impossible</u> perquè <math>\begin{array}{l} 2 \mid a \cdot 2 \\ 2 \mid \lambda \cdot 6 \\ 2 \nmid 1 \end{array}</math>
<math>\text{Si } \overline{a} \text{ fos invers de 2} \Rightarrow \overline{a} \cdot \overline{2} = \overline{1}</math>, és a dir, <math>a \cdot 2 = 1 + \lambda \cdot 6</math>: <u>impossible</u> perquè <math>\begin{array}{l} 2 \mid a \cdot 2 \\ 2 \mid \lambda \cdot 6 \\ 2 \nmid 1 \end{array}</math>
'''<u>Conclusió:</u>'''
<math>\frac{\mathbb{Z}}{6\mathbb{Z}}</math> <u>no</u> és un cos.
{{Collapse bottom}}
{{Collapse bottom}}
'''<u>Fet</u>''': <math>\frac{\mathbb{Z}}{n\mathbb{Z}} \text{ és un cos} \iff n=p \text{és un un nombre primer}</math>
Si "n" no és primer, és producte de diversos nombres primers menors que "n", que no seran invertibles perquè no seran comprimers amb "n" per l'argument de l'anterior exerici.
'''<u>Recordatori: Identitat de Bézout:</u>'''
Donats <math>a, b \in \mathbb{Z}</math>, existeixen <math>c, d \in \mathbb{Z}</math> tals que:
<math>mcd(a, b) = c \cdot a + d \cdot b</math>
Exemple: <math>1 = c \cdot 2 + d \cdot p \\ \overline{1} = \overline{c} \cdot \overline{2}</math>
<u>'''Definició:'''</u> sigui K un cos. Un <u>espai vectorial sobre k</u> (o un <u>k-espai vectorial</u>, o un <u>k-e.v.</u>) és un conjunt no buit E amb una operació interna (suma): <math>E \times E \rightarrow E \\ (u, v) \longmapsto u+v</math>, i una operació externa (producte per escalars): <math>K \times E \rightarrow E \\ (\lambda, u) \longmapsto \lambda \cdot u</math> tals que:
* La suma és:
** Associativa
** Commutativa
** Té element neutre: <math>O_E = \overrightarrow{O}</math>
** Tot element té invers: <math>u \in E, \exists -u \mid u+(-u)=u-u=\overrightarrow{0}</math>
* <math>\forall \lambda, \mu \in K \text{i} \forall u, v \in E</math> es té:
** <math>(\lambda + \mu)u = \lambda u + \mu u, \quad \lambda(u+v) = \lambda u + \lambda v</math>
** <math>1 \cdot u = u, \quad (\lambda \mu)u = \lambda(\mu u)</math>
Els elements d'<math>E</math> s'anomenen <u>vectors</u>.
Els elements de <math>K</math> s'anomenen <u>escalars</u>.


== Referències ==
== Referències ==

Revision as of 20:37, 18 September 2017

Espais vectorials i subespais vectorials

Definició: un cos és un conjunt K no buit amb dues operacions internes

  • Suma: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a+b }[/math]
  • Producte: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a \cdot b }[/math]

tals que:

  • La suma és:
    • Associativa [math]\displaystyle{ (a+b)+c=a+(b+c) \quad \forall a, b, c \in K }[/math]
    • Commutativa [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
    • Admet element neutre [math]\displaystyle{ \exists 0_k = 0 \in K \quad \text{tal que} \quad a+0=a \quad a \in K }[/math]
    • Existeix l'element invers (o oposat) [math]\displaystyle{ \forall a \in K, \quad \exists b \in K \quad | \quad a+b=0 }[/math]
  • El producte és:
    • Associatiu [math]\displaystyle{ (ab)c=a(bc) \quad \forall a,b,c \in K }[/math]
    • Commutatiu [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
    • Admet element neutre [math]\displaystyle{ \exists 1_k=1 \in K \quad | \quad a \cdot 1 = 1 \cdot a = a, \forall a \in K }[/math]
    • Existeix un element invers [math]\displaystyle{ \forall a \in K \setminus \{0\}, \exists b \in K \quad | \quad ab=1 }[/math][1]
  • La suma i el producte es relacionen per la propietat distributiva: [math]\displaystyle{ a(b+c)=ab+ac \quad \forall a,b,c \in K }[/math]

Exemples:

  1. [math]\displaystyle{ K = \mathbb{Q}, \mathbb{R}, \mathbb{C} }[/math] són cossos.
  2. [math]\displaystyle{ \mathbb{N}, \mathbb{Z}, k[x] }[/math] no són cossos.
  3. Enters mòduls n

Enters mòduls n (parèntesi)

Fixat un natural n, dos enters [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] són congruents módul n, [math]\displaystyle{ a \equiv b \mod{n} }[/math], [math]\displaystyle{ n \mid a-b }[/math], és a dir; quan dividim per "n" obtenim el mateix residu amb "a" i amb "b".

Agrupant els enters que són congruents mòdul "n" obtenim les classes de congruències mòdul n: [math]\displaystyle{ \bar{a} = \{a+\lambda \cdot n\}_{\lambda \in \mathbb{Z}} }[/math]

Notació: [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} = \{\text{conjunt de classes de congrüència mòdul n}\} }[/math] (es llegeix "zeta mòdul n")

Exemple: [math]\displaystyle{ n=5 }[/math]

[math]\displaystyle{ \frac{\mathbb{Z}}{5\mathbb{Z}} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\} }[/math]

[math]\displaystyle{ \bar{0} = \{..., -5, 0, 5, 10, ...\} }[/math] [math]\displaystyle{ \bar{1} = \{..., -9, -4, 1, 6, 11, ...\} }[/math]

Exercici: Comproveu que les operacions suma i producte estan ben definides a [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} }[/math]

[math]\displaystyle{ \begin{cases} \bar{a} + \bar{b} = \overline{a+b} \\ \bar{a} \cdot \bar{b} = \overline{a \cdot b} \end{cases} en \frac{\mathbb{Z}}{n\mathbb{Z}} }[/math]

[math]\displaystyle{ \bar{1} + \bar{4} = \bar{5} \\ \bar{5} + \bar{14} = \bar{20} }[/math]

De totes les propietats de la llista, l'única que "pot fallar" és l'existència d'invers respecte el producte (les altres són certes a [math]\displaystyle{ \mathbb{Z} }[/math]).

Per n=5:

[math]\displaystyle{ \begin{cases} \overline{1} \cdot \overline{1} = \overline{1} \\ \overline{2} \cdot \overline{3} = \overline{1} \\ \overline{3} \cdot \overline{2} = \overline{1} \\ \overline{4} \cdot \overline{4} = \overline{1} \end{cases} \Rightarrow \text{Tots els productes tenen invers respecte del producte} \Rightarrow \frac{\mathbb{Z}}{5\mathbb{Z}} }[/math]

Per n=6:

[math]\displaystyle{ \frac{\mathbb{Z}}{6\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\} }[/math]

[math]\displaystyle{ \overline{1} \cdot \overline{1} = \overline{1} }[/math]

[math]\displaystyle{ \text{Si } \overline{a} \text{ fos invers de 2} \Rightarrow \overline{a} \cdot \overline{2} = \overline{1} }[/math], és a dir, [math]\displaystyle{ a \cdot 2 = 1 + \lambda \cdot 6 }[/math]: impossible perquè [math]\displaystyle{ \begin{array}{l} 2 \mid a \cdot 2 \\ 2 \mid \lambda \cdot 6 \\ 2 \nmid 1 \end{array} }[/math]

Conclusió: [math]\displaystyle{ \frac{\mathbb{Z}}{6\mathbb{Z}} }[/math] no és un cos.

Fet: [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} \text{ és un cos} \iff n=p \text{és un un nombre primer} }[/math]

Si "n" no és primer, és producte de diversos nombres primers menors que "n", que no seran invertibles perquè no seran comprimers amb "n" per l'argument de l'anterior exerici.

Recordatori: Identitat de Bézout:

Donats [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], existeixen [math]\displaystyle{ c, d \in \mathbb{Z} }[/math] tals que:

[math]\displaystyle{ mcd(a, b) = c \cdot a + d \cdot b }[/math]

Exemple: [math]\displaystyle{ 1 = c \cdot 2 + d \cdot p \\ \overline{1} = \overline{c} \cdot \overline{2} }[/math]

Definició: sigui K un cos. Un espai vectorial sobre k (o un k-espai vectorial, o un k-e.v.) és un conjunt no buit E amb una operació interna (suma): [math]\displaystyle{ E \times E \rightarrow E \\ (u, v) \longmapsto u+v }[/math], i una operació externa (producte per escalars): [math]\displaystyle{ K \times E \rightarrow E \\ (\lambda, u) \longmapsto \lambda \cdot u }[/math] tals que:

  • La suma és:
    • Associativa
    • Commutativa
    • Té element neutre: [math]\displaystyle{ O_E = \overrightarrow{O} }[/math]
    • Tot element té invers: [math]\displaystyle{ u \in E, \exists -u \mid u+(-u)=u-u=\overrightarrow{0} }[/math]
  • [math]\displaystyle{ \forall \lambda, \mu \in K \text{i} \forall u, v \in E }[/math] es té:
    • [math]\displaystyle{ (\lambda + \mu)u = \lambda u + \mu u, \quad \lambda(u+v) = \lambda u + \lambda v }[/math]
    • [math]\displaystyle{ 1 \cdot u = u, \quad (\lambda \mu)u = \lambda(\mu u) }[/math]

Els elements d'[math]\displaystyle{ E }[/math] s'anomenen vectors.

Els elements de [math]\displaystyle{ K }[/math] s'anomenen escalars.

Referències

  1. Notació: [math]\displaystyle{ b=a^{-1} \\ c \cdot (a^{-1}) = \frac{c}{a} }[/math]