Tema 2. Espais vectorials

From Potatopedia
Revision as of 20:22, 5 October 2017 by Avm99963 (talk | contribs) (Acabat apartat 2.1)

Espais vectorials i subespais vectorials

Definició: un cos és un conjunt K no buit amb dues operacions internes

  • Suma: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a+b }[/math]
  • Producte: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a \cdot b }[/math]

tals que:

  • La suma és:
    • Associativa [math]\displaystyle{ (a+b)+c=a+(b+c) \quad \forall a, b, c \in K }[/math]
    • Commutativa [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
    • Admet element neutre [math]\displaystyle{ \exists 0_k = 0 \in K \quad \text{tal que} \quad a+0=a \quad a \in K }[/math]
    • Existeix l'element invers (o oposat) [math]\displaystyle{ \forall a \in K, \quad \exists b \in K \quad | \quad a+b=0 }[/math]
  • El producte és:
    • Associatiu [math]\displaystyle{ (ab)c=a(bc) \quad \forall a,b,c \in K }[/math]
    • Commutatiu [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
    • Admet element neutre [math]\displaystyle{ \exists 1_k=1 \in K \quad | \quad a \cdot 1 = 1 \cdot a = a, \forall a \in K }[/math]
    • Existeix un element invers [math]\displaystyle{ \forall a \in K \setminus \{0\}, \exists b \in K \quad | \quad ab=1 }[/math][1]
  • La suma i el producte es relacionen per la propietat distributiva: [math]\displaystyle{ a(b+c)=ab+ac \quad \forall a,b,c \in K }[/math]

Exemples:

  1. [math]\displaystyle{ K = \mathbb{Q}, \mathbb{R}, \mathbb{C} }[/math] són cossos.
  2. [math]\displaystyle{ \mathbb{N}, \mathbb{Z}, k[x] }[/math] no són cossos.
  3. Enters mòduls n

Enters mòduls n (parèntesi)

Fixat un natural n, dos enters [math]\displaystyle{ a, b \in \mathbb{Z} }[/math] són congruents módul n, [math]\displaystyle{ a \equiv b \mod{n} }[/math], [math]\displaystyle{ n \mid a-b }[/math], és a dir; quan dividim per "n" obtenim el mateix residu amb "a" i amb "b".

Agrupant els enters que són congruents mòdul "n" obtenim les classes de congruències mòdul n: [math]\displaystyle{ \bar{a} = \{a+\lambda \cdot n\}_{\lambda \in \mathbb{Z}} }[/math]

Notació: [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} = \{\text{conjunt de classes de congrüència mòdul n}\} }[/math] (es llegeix "zeta mòdul n")

Exemple: [math]\displaystyle{ n=5 }[/math]

[math]\displaystyle{ \frac{\mathbb{Z}}{5\mathbb{Z}} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\} }[/math]

[math]\displaystyle{ \bar{0} = \{\ldots, -5, 0, 5, 10, \ldots\} }[/math] [math]\displaystyle{ \bar{1} = \{\ldots, -9, -4, 1, 6, 11, \ldots\} }[/math]

Exercici: Comproveu que les operacions suma i producte estan ben definides a [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} }[/math]

[math]\displaystyle{ \begin{cases} \bar{a} + \bar{b} = \overline{a+b} \\ \bar{a} \cdot \bar{b} = \overline{a \cdot b} \end{cases} en \frac{\mathbb{Z}}{n\mathbb{Z}} }[/math]

[math]\displaystyle{ \bar{1} + \bar{4} = \bar{5} \\ \bar{5} + \bar{14} = \bar{20} }[/math]

De totes les propietats de la llista, l'única que "pot fallar" és l'existència d'invers respecte el producte (les altres són certes a [math]\displaystyle{ \mathbb{Z} }[/math]).

Per n=5:

[math]\displaystyle{ \begin{cases} \overline{1} \cdot \overline{1} = \overline{1} \\ \overline{2} \cdot \overline{3} = \overline{1} \\ \overline{3} \cdot \overline{2} = \overline{1} \\ \overline{4} \cdot \overline{4} = \overline{1} \end{cases} \Rightarrow \text{Tots els productes tenen invers respecte del producte} \Rightarrow \frac{\mathbb{Z}}{5\mathbb{Z}} }[/math]

Per n=6:

[math]\displaystyle{ \frac{\mathbb{Z}}{6\mathbb{Z}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\} }[/math]

[math]\displaystyle{ \overline{1} \cdot \overline{1} = \overline{1} }[/math]

[math]\displaystyle{ \text{Si } \overline{a} \text{ fos invers de 2} \Rightarrow \overline{a} \cdot \overline{2} = \overline{1} }[/math], és a dir, [math]\displaystyle{ a \cdot 2 = 1 + \lambda \cdot 6 }[/math]: impossible perquè [math]\displaystyle{ \begin{array}{l} 2 \mid a \cdot 2 \\ 2 \mid \lambda \cdot 6 \\ 2 \nmid 1 \end{array} }[/math]

Conclusió: [math]\displaystyle{ \frac{\mathbb{Z}}{6\mathbb{Z}} }[/math] no és un cos.

Fet: [math]\displaystyle{ \frac{\mathbb{Z}}{n\mathbb{Z}} \text{ és un cos} \iff n=p \text{ és un un nombre primer} }[/math]

Si "n" no és primer, és producte de diversos nombres primers menors que "n", que no seran invertibles perquè no seran comprimers amb "n" per l'argument de l'anterior exerici.

Recordatori: Identitat de Bézout:

Donats [math]\displaystyle{ a, b \in \mathbb{Z} }[/math], existeixen [math]\displaystyle{ c, d \in \mathbb{Z} }[/math] tals que:

[math]\displaystyle{ mcd(a, b) = c \cdot a + d \cdot b }[/math]

Exemple: [math]\displaystyle{ 1 = c \cdot 2 + d \cdot p \\ \overline{1} = \overline{c} \cdot \overline{2} }[/math]

Definició: sigui K un cos. Un espai vectorial sobre k (o un k-espai vectorial, o un k-e.v.) és un conjunt no buit E amb una operació interna (suma): [math]\displaystyle{ E \times E \rightarrow E \\ (u, v) \longmapsto u+v }[/math], i una operació externa (producte per escalars): [math]\displaystyle{ K \times E \rightarrow E \\ (\lambda, u) \longmapsto \lambda \cdot u }[/math] tals que:

  • La suma és:
    • Associativa
    • Commutativa
    • Té element neutre: [math]\displaystyle{ O_E = \overrightarrow{O} }[/math]
    • Tot element té invers: [math]\displaystyle{ u \in E, \exists -u \mid u+(-u)=u-u=\overrightarrow{0} }[/math]
  • [math]\displaystyle{ \forall \lambda, \mu \in K \text{i} \forall u, v \in E }[/math] es té:
    • [math]\displaystyle{ (\lambda + \mu)u = \lambda u + \mu u, \quad \lambda(u+v) = \lambda u + \lambda v }[/math]
    • [math]\displaystyle{ 1 \cdot u = u, \quad (\lambda \mu)u = \lambda(\mu u) }[/math]

Els elements d'[math]\displaystyle{ E }[/math] s'anomenen vectors.

Els elements de [math]\displaystyle{ K }[/math] s'anomenen escalars.

Exemple 1: [math]\displaystyle{ K^n = \{\text{conjunt de } n\text{-tuples amb coeficients en } K\} = \{(a_1, \ldots, a_n) \mid a_i \in K\} }[/math]

[math]\displaystyle{ K_n }[/math] és K-e.v. amb les operacions naturals:

[math]\displaystyle{ \begin{cases} (a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n) \\ \lambda(a_1, \ldots, a_n) = (\lambda a_1, \ldots, \lambda a_n) \end{cases} }[/math]

Exemple 2: [math]\displaystyle{ M_{m \times n}(k) = \{\text{matrius } m \times n \text{ amb coeficients en } K\} }[/math]

Són matrius que tenen m files i n columnes, amb elements de la forma [math]\displaystyle{ (a_{ij}) \mid a_{ij} \in K, i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\} }[/math], on [math]\displaystyle{ ij }[/math] és el coeficient amb posició.

[math]\displaystyle{ M_{m \times n}(K) }[/math] és un K-e.v. amb les operacions naturals:

[math]\displaystyle{ \begin{cases} (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij}) \\ \lambda(a_{ij}) = (\lambda a_{ij}) \end{cases} }[/math]

Exemple 3: [math]\displaystyle{ K_n[x] = \{\text{polinomis de } K[x] \text{ de grau} \leq n\} }[/math]

Són tots els polinomis de la forma [math]\displaystyle{ \{a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \mid a_i \in K\} }[/math].

És un K-e.v. amb les operacions naturals.

Comentari: un mateix conjunt pot ser E.V. respecte operacions diferents i, de fet, respecte cosos diferents també.

Exemple:

[math]\displaystyle{ \begin{array}{rl} E = \mathbb{C}^2 & \text{és } \mathbb{C}\text{-e.v.} \\ & \text{és } \mathbb{R}\text{-e.v.} \\ & \text{és } \mathbb{Q}\text{-e.v.}\end{array} }[/math]
Exemple 4: [math]\displaystyle{ E = K[x] = \{\text{polinomis amb coeficients en } K\} }[/math]

És k-e.v. amb les operacions naturals.

Exemple 5: [math]\displaystyle{ E = \zeta([a, b]) = \{\text{funcions contínues } f: [a, b] \longrightarrow \mathbb{R}\} }[/math]

És [math]\displaystyle{ \mathbb{R}\text{-e.v.} }[/math] amb operacions naturals:

[math]\displaystyle{ \begin{cases} (f+g)(x) = f(x) + g(x) \\ (\lambda f)(x) = \lambda \cdot f(x) \end{cases} }[/math]

Observacions: Les notacions [math]\displaystyle{ \begin{cases} O_E \\ -u \end{cases} }[/math] són consistents perquè:

  1.  El neutre de la suma és únic.
  2. L'invers d'un [math]\displaystyle{ u \in E }[/math] qualsevol és únic.

Justificació:

  1. Suposem que no és únic: [math]\displaystyle{ O_E + \tilde{O_E} = O_E = \tilde{O_E} }[/math]
  2. Si [math]\displaystyle{ \left.\begin{array}{r} u + w_1 = O_E \\ u + w_2 = O_E \end{array} \right\rbrace \implies u+w_2+w_1 = w_2 + O_E \iff O_E + w_1 = w_2 \iff w_1 = w_2 }[/math]

Essencialment: [math]\displaystyle{ u+w = w+v \implies w=v }[/math]

Propietat: Sigui E un K-e.v.

Siguin [math]\displaystyle{ \left\{ \begin{array}{l} u, v, w \in E \\ \lambda, \mu \in K \end{array} \right\} }[/math]. Aleshores:

  1. [math]\displaystyle{ \lambda(u-v) = \lambda u - \lambda v, \quad (\lambda - \mu)u = \lambda u - \mu u }[/math]
  2. [math]\displaystyle{ 0 \cdot u = \overrightarrow{0} = \lambda \cdot \overrightarrow{0} }[/math]
  3. [math]\displaystyle{ -(\lambda u) = (-\lambda) u = \lambda(-u) }[/math]
  4. En particular [math]\displaystyle{ (-1)u = -u }[/math]
  5. [math]\displaystyle{ \lambda u = 0 \iff \left\{ \begin{array}{l} \lambda = 0 \\ _\text{o bé} \\ u = \overrightarrow{0} \end{array} \right\} }[/math]
  6. [math]\displaystyle{ \begin{cases} \lambda \neq 0 \\ \lambda \cdot u = \lambda \cdot v \end{cases} \implies u=v }[/math]
  7. [math]\displaystyle{ \begin{cases} u \neq 0 \\ \lambda \cdot u = \mu \cdot u \end{cases} \implies \lambda = \mu }[/math]
Demostració

(1) [math]\displaystyle{ \lambda (u-v) = \lambda u - \lambda v \text{ ?} \\ \\ \lambda (u-v) + \lambda v = \lambda u + \lambda(-v) + \lambda v = \lambda u + \lambda (-u + u) = \lambda(u + \overrightarrow{0}) = \lambda u \implies \\ \lambda (u-v) = \lambda u - \lambda v }[/math]

(2) [math]\displaystyle{ 0 \cdot u + 0 \cdot u = (0+0) u = 0 \cdot u \stackrel{\text{sumant l'inv.}}{\implies} \\ 0 \cdot u + 0 \cdot u - 0 \cdot u = 0 \cdot u - 0 \cdot u \implies \\ 0 \cdot u = \overrightarrow{0} }[/math]

(3)
[math]\displaystyle{ \left. \begin{array}{l} -(\lambda u) + \lambda u = \overrightarrow{0} \\ (-\lambda) u + \lambda u = (-\lambda + \lambda)u = 0 \cdot u = \overrightarrow{0} \end{array} \right\} \stackrel{\text{unicitat de l'inv.}}{\implies} \\ (-\lambda) u = -\lambda u }[/math]

{4}

  • [math]\displaystyle{ \Leftarrow }[/math]: vist (2).
  • [math]\displaystyle{ \Rightarrow }[/math]: suposem [math]\displaystyle{ \begin{cases} \lambda u = \overrightarrow{0} \\ \lambda \neq 0 \end{cases} }[/math]
    [math]\displaystyle{ \left.\begin{array}{r} k \text{ cos} \\ \lambda \neq 0 \end{array} \right\} \implies \exists \lambda^{-1} \in K \\ \lambda^{-1} \cdot \lambda \cdot u = \lambda^{-1} \cdot \overrightarrow{0} \\ u = \overrightarrow{0} }[/math]

Definició: E k-e.v. Un subespai vectorial (s.e.v.) de E és un subconjunt no buit [math]\displaystyle{ F \subseteq E }[/math] tal que:

  • F és tancat per la suma, és a dir, [math]\displaystyle{ u + v \in F, \forall u, v \in F }[/math]
  • F és tancat pel producte per escalars, és a dir, [math]\displaystyle{ \lambda \cdot u \in F, \begin{cases} \forall u \in F \\ \forall \lambda \in K \end{cases} }[/math]
Exemples

(1) Si [math]\displaystyle{ K = \mathbb{R} }[/math] i [math]\displaystyle{ A \in M_{mxn}(\mathbb{R}) }[/math] és una matriu qualsevol (fixada), aleshores: [math]\displaystyle{ F = \{ x \in \mathbb{R}^n \mid Ax^t = \vec{0} \} }[/math] és s.e.v. de [math]\displaystyle{ \mathbb{R}^n }[/math].

En general, els conjunts de solucions de sistemes lineals homogenis (termes independents iguals).

  • [math]\displaystyle{ x, y \in F \implies Ax^t + Ay^t = A(x+y)^t \text{ (perquè }kx^t = \vec{0} \forall k \in F \text{ )} \implies x+y \in F }[/math]
  • [math]\displaystyle{ \begin{array}{r} x \in F \\ \lambda \in \mathbb{R} \end{array} \implies Ax^t = \vec{0} \implies \lambda (Ax^t) = A (\lambda x^t) = A (\lambda x)^t = \vec{0} \implies \lambda x \in F }[/math]

(2) En [math]\displaystyle{ \mathbb{R}^3 }[/math]

[math]\displaystyle{ F = \left\{ (x, y, z) \in \mathbb{R}^3 \,\middle\vert\, \begin{array}{c} x+2y-z=0 \\ x+3z=0 \end{array} \right\} }[/math]

Ex: [math]\displaystyle{ \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 3 \end{bmatrix} }[/math]


(3) En [math]\displaystyle{ E = M_n(K) }[/math],

[math]\displaystyle{ F = \{A \in E \mid A^t = A\} }[/math] és s.e.v. de E.

  • [math]\displaystyle{ A, B \in F \implies \left\{ \begin{array}{l} A^t=A \\ B^t=B \end{array} \right\} \implies \underbrace{A^t + B^t}_{(A+B)^t} = A+B }[/math]
  • [math]\displaystyle{ \begin{array}{l} A \in F \\ \lambda \in K \end{array} \implies A^t = A \implies (\lambda A)^t = \lambda A^t \implies \lambda \cdot A \in F }[/math]

Per exemple, en [math]\displaystyle{ M_2(\mathbb{R}) }[/math]:

[math]\displaystyle{ F = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \,\middle\vert\, A^t = A \right\} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) \,\middle\vert\, \underbrace{b-c = 0}_{\text{sistema lineal}\\\text{i homogeni}} \right\} }[/math]

Si no fora un sistema lineal i homogeni, no seria un subespai vectorial.


(4) En [math]\displaystyle{ E = \mathbb{R}_n[x] }[/math], [math]\displaystyle{ F = \{ p(x) \in E \mid p'(1) = 0 \} }[/math] és s.e.v. de E.

  • [math]\displaystyle{ p, q \in E \implies \begin{array}{l} p'(1) = 0 \\ q'(1) = 0 \end{array} \implies p'(1) + q'(1) = (p+q)'(1) = 0 \implies p+q \in F }[/math]
  • [math]\displaystyle{ \left. \begin{array}{r} p \in F \\ \lambda \in \mathbb{R} \end{array} \right\} \implies \lambda p \in F \text{ perquè } \frac{d}{dx}(\lambda p) = \lambda\frac{d}{dx}(p) }[/math]

Per exemple, en [math]\displaystyle{ E = \mathbb{R}_3[x] }[/math]:

[math]\displaystyle{ F = \{ \underbrace{p(x)}_{a+bx+cx^2+dx^3} \in E \mid \underbrace{p'(1) = 0}_{b+2cx+3dx^2 \mid_{x=1} = 0} \} }[/math]

[math]\displaystyle{ b+2cx+3dx^2 \mid_{x=1} = 0 \implies \underbrace{b+2c+3d = 0}_\text{sistema lineal i homogeni} }[/math]

Definició: Sigui E un K-e.v. Diem que un vector [math]\displaystyle{ u \in E }[/math] és combinació lineal (c.l.) dels vectors [math]\displaystyle{ u_1, \ldots, u_n \in E }[/math] si existeixen escalars [math]\displaystyle{ \lambda_1, \lambda_2, \ldots, \lambda_n \in K }[/math] tals que:

[math]\displaystyle{ u = \lambda_1 u_1 + \ldots \lambda_n u_n }[/math]

Anomenem coeficients de la c.l. als [math]\displaystyle{ \lambda_1, \ldots, \lambda_n }[/math].

Proposició: E K-e.v. Si [math]\displaystyle{ F \subseteq E }[/math] és un subconjunt no buit, aleshores són equivalents:

  1. F és s.e.v. de E.
  2. [math]\displaystyle{ \lambda u + \mu v \in F, \begin{array}{l} \forall u, v \in F \\ \forall \lambda, \mu \in K \end{array} }[/math]
  3. F és tancat per c.l.
  4. F és k-e.v., amb les operacions de E.
Demostració

Podem veure [math]\displaystyle{ \begin{cases} (i) \implies (ii) \implies (iii) \implies (iv) \\ (i) \iff (iv) \end{cases} }[/math]


[math]\displaystyle{ (i) \implies (ii) }[/math]: suposo que [math]\displaystyle{ F \subseteq E }[/math] és s.e.v.

Siguin [math]\displaystyle{ \begin{cases} u, v \in F \\ \mu, \lambda \in K \end{cases} }[/math] (volem veure que [math]\displaystyle{ \lambda u + \mu v \in F }[/math])

[math]\displaystyle{ \left.\begin{array}{c} \left.\begin{array}{r} u \in F \\ \lambda \in K \end{array}\right\} \stackrel{\text{F s.e.v.}}{\implies} \lambda \cdot u \in F \\ \left.\begin{array}{r} v \in F \\ \mu \in K \end{array}\right\} \stackrel{\text{F s.e.v.}}{\implies} \mu \cdot v \in F \end{array}\right\} \stackrel{\text{F s.e.v.}}{\implies} \lambda \cdot u + \mu \cdot v \in F }[/math]


[math]\displaystyle{ (ii) \implies (iii) }[/math]:

[math]\displaystyle{ \underbrace{\underbrace{\lambda_1 u_1 + \lambda_2 u_2}_{\in F} + \underbrace{\lambda_3 u_3}_{\in F}}_{\in F} }[/math] Aplicant múltiples vegades (ii).


[math]\displaystyle{ (iii) \implies (i) }[/math]:

És un cos que engloba (i).


[math]\displaystyle{ (i) \iff (iv) }[/math]:

s.e.v. ⇒ la propietat és que les operacions estiguin ben definides.

Definició: E K-e.v. Si [math]\displaystyle{ S \subseteq E }[/math] és un subconjunt, definim:

[math]\displaystyle{ \langle S \rangle = \underbrace{\left\{\lambda_1 u_1 + \ldots + \lambda_n u_n \,\middle\vert\, \begin{array}{c} u_1, \ldots, u_n \in S \\ \lambda_1, \ldots, \lambda_k \in K \end{array} \right\}}_{\text{és el conjunt de totes les c.l. de vectors de } S} }[/math]

i l'anomenem subespai generat per S.

Direm que S és un conjunt de generadors de [math]\displaystyle{ \langle S \rangle }[/math].

Observació: [math]\displaystyle{ F \subseteq E \text{s.e.v.} \implies \vec{0} \in F }[/math]

Exemple: [math]\displaystyle{ F = \left\{ (x, y, z) \in \mathbb{R}^3 \,\middle\vert\, \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \right\} }[/math]

[math]\displaystyle{ \text{Sistema lineal no homogeni} \implies \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \notin F \implies \text{F no és s.e.v. de } \mathbb{R}^3 }[/math]

Proposició: [math]\displaystyle{ \langle s \rangle }[/math] és un subespai vectorial de E i, a més , és el mínim s.e.v. de E que conté S.

Demostració:

  • [math]\displaystyle{ \langle s \rangle }[/math] és s.e.v: [math]\displaystyle{ \langle s \rangle }[/math] és tancat per combinacions lineals per la definició del conjunt (c.l. de c.l. de S són c.l. de [math]\displaystyle{ \langle s \rangle }[/math]).
    Perquè clarament és tancat per combinacions lineals.
  • [math]\displaystyle{ \langle s \rangle }[/math] és mínim: Perquè si [math]\displaystyle{ \left\{ \begin{array}{l} F \subseteq E \text{ s.e.v.} \\ S \subseteq F \end{array} \right\} \implies \begin{array}{l} F \text{ conté totes les c.l. de vectors de } \\ S \text{, és a dir, } \langle s \rangle \subseteq F \end{array} }[/math]

Per definició: [math]\displaystyle{ \langle \emptyset \rangle = 0 }[/math]

[math]\displaystyle{ S \subseteq E \implies [s \text{ és s.e.v.} \iff S = \langle s \rangle] }[/math]

Notació: [math]\displaystyle{ S = \{u_1, \ldots, u_k\} \\ \langle S \rangle = \langle \{ u_1, \ldots, u_k \} \rangle = \langle u_1, \ldots, u_k \rangle = [u_1, \ldots, u_k] }[/math]

Referències

  1. Notació: [math]\displaystyle{ b=a^{-1} \\ c \cdot (a^{-1}) = \frac{c}{a} }[/math]