Tema 2. Espais vectorials
From Potatopedia
Espais vectorials i subespais vectorials
Definició: un cos és un conjunt K no buit amb dues operacions internes
- Suma: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a+b }[/math]
- Producte: [math]\displaystyle{ K \times K \longrightarrow K \\ (a, b) \longmapsto a \cdot b }[/math]
tals que:
- La suma és:
- Associativa [math]\displaystyle{ (a+b)+c=a+(b+c) \quad \forall a, b, c \in K }[/math]
- Commutativa [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
- Admet element neutre [math]\displaystyle{ \exists 0_k = 0 \in K \quad \text{tal que} \quad a+0=a \quad a \in K }[/math]
- Existeix l'element invers (o oposat) [math]\displaystyle{ \forall a \in K, \quad \exists b \in K \quad | \quad a+b=0 }[/math]
- El producte és:
- Associatiu [math]\displaystyle{ (ab)c=a(bc) \quad \forall a,b,c \in K }[/math]
- Commutatiu [math]\displaystyle{ a+b=b+a \quad \forall a,b,c \in K }[/math]
- Admet element neutre [math]\displaystyle{ \exists 1_k=1 \in K \quad | \quad a \cdot 1 = 1 \cdot a = a, \forall a \in K }[/math]
- Existeix un element invers [math]\displaystyle{ \forall a \in K \setminus \{0\}, \exists b \in K \quad | \quad ab=1 }[/math][1]
- La suma i el producte es relacionen per la propietat distributiva: [math]\displaystyle{ a(b+c)=ab+ac \quad \forall a,b,c \in K }[/math]
Exemples:
- [math]\displaystyle{ K = \mathbb{Q}, \mathbb{R}, \mathbb{C} }[/math] són cossos.
Referències
- ↑ Notació: [math]\displaystyle{ b=a^{-1} \\ c \cdot (a^{-1}) = \frac{c}{a} }[/math]