Tema 1. Sèries numèriques i integrals impròpies
Introducció
Definició: Una sèrie de nombres reals és un parell de successions [math]\displaystyle{ (a_n)_{n \geq 0}, (s_n)_{n \geq 0} }[/math] relacionades per [math]\displaystyle{ s_n = \sum_{k=0}^n a_k }[/math] on:
- [math]\displaystyle{ a_n }[/math] és el terme n-èssim
- [math]\displaystyle{ s_n }[/math] és la suma parcial n-èssima
Observació: Les sumes parcials determinen els termes:
[math]\displaystyle{ a_0 = s_0 \\ a_n = s_n - s_{n-1} \quad (n \geq 1) }[/math]
Definició: La suma de la sèrie és el límit (si existeix) de les sumes parcials n-èssimes: [math]\displaystyle{ s = \lim s_n = \lim_{n \rightarrow \infty} \sum_{k=0}^n a_k }[/math]
Es representa per [math]\displaystyle{ s = \sum_{n \geq 0} a_n = \sum_{n=0}^\infty a_n }[/math]
Aquesta notació també s'utilitza per representar la sèrie.
Definició: Una sèrie es diu convergent o divergent segons que ho sigui la successió de sumes parcials:
- Convergent: [math]\displaystyle{ \sum_{k \geq 0} a_k \in \mathbb{R} }[/math]
- Divergent: [math]\displaystyle{ \sum_{k \geq 0} a_k = \pm \infty }[/math]
- Oscil·lant: [math]\displaystyle{ \lim_{n \rightarrow \infty} \sum_{k=0}^n a_k }[/math] no existeix
La sèrie geomètrica
Definició: Donat [math]\displaystyle{ r \in \mathbb{R} }[/math], la sèrie geomètrica de raó r és [math]\displaystyle{ \sum_{n \geq 0}r^n }[/math]
Proposició: La sèrie geomètrica és convergent si [math]\displaystyle{ |r| \lt 1 }[/math].
- En tal cas, la seva suma val [math]\displaystyle{ \sum_{n \geq 0}r^n = \frac{1}{1-r} }[/math]
- Si [math]\displaystyle{ r \geq 1 }[/math], la sèrie és divergent.
- Si [math]\displaystyle{ r \leq 1 }[/math], la sèrie és oscil·lant.
Demostració |
---|
[math]\displaystyle{ s_n = 1 + r + r^2 + \cdots + r^n = \left\{\begin{array}{ll} n+1 & \text{si } r = 1 \\ \frac{r^{n+1} - 1}{r - 1} & \text{si } r \neq 1 \end{array}\right. }[/math] ∎
|
Exemple: [math]\displaystyle{ \sum_{n \geq 1}\frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots = 1 }[/math]
[math]\displaystyle{ s_1 = \frac{1}{2} \\ s_2 = \frac{2}{3} \\ s_3 = \frac{3}{4} \\ \vdots \\ s_n = \frac{n}{n+1} \text{?} }[/math]
Proposicions i propietats de les sèries
Proposició: [math]\displaystyle{ \sum a_n \text{ convergent} \implies \lim a_n = 0 }[/math] (condició necessària de convergència)
Demostració |
---|
[math]\displaystyle{ a_n = s_n - s_{n-1} \implies \lim a_n = \lim s_n - \lim s_{n-1} = s - s = 0 }[/math] ∎
|
Proposició: (criteri de Cauchy per a sèries) Una sèrie [math]\displaystyle{ \sum a_n }[/math] és convergent sii [math]\displaystyle{ \forall \epsilon \gt 0, \exists n_0 \text{ tq } m \gt n \geq n_0 \implies |s_m - s_n| = |a_{n+1} + \cdots + a_m| \lt \epsilon }[/math]
Demostració |
---|
És el criteri de Cauchy aplicat a la successió de sumes parcials (s_n) ∎
|
Propietats
- Linealitat: trivial (suma de termes: suma de sumes; escalació de termes: escalació de la suma)
La convergència d'una sèrie només depèn de la "cua" de la sèrie.
Proposició: Si dues successions [math]\displaystyle{ (a_n), (b_n) }[/math] són iguals llevat d'un nombre finit de termes, aleshores les dues sèries [math]\displaystyle{ \sum a_n \text{ i } \sum b_n }[/math] tenen el mateix caràcter (les dues són convergents, divergents o oscil·lants).
Demostració |
---|
Les dues són iguals llevat d'un nombre finit de termes, o sigui, a partir d'algun [math]\displaystyle{ n_0 }[/math] les dues successions són iguals. Per tant, si [math]\displaystyle{ n \geq n_0 }[/math], [math]\displaystyle{ \begin{array}{l} \sum_{k=0}^n a_k = \overbrace{\sum_{k=0}^{n_0 - 1} a_k}^{A} + \sum_{k=n_0}^n a_k \\ \sum_{k=0}^n b_k = \underbrace{\sum_{k=0}^{n_0 - 1} b_k}_{B} + \sum_{k=n_0}^n b_k \end{array} \underset{a_k = b_k \text{ si } k \geq n_0 \\ \text{i fem el límit}}{\implies} \begin{array}{l} \lim \sum_{k=0}^n a_k = A + \lim \sum_{k=n_0}^n a_k \\ \lim \sum_{k=0}^n b_k = B + \lim \sum_{k=n_0}^n a_k \end{array} }[/math]∎
|
Proposició: (associativitat) Sigui [math]\displaystyle{ \sum_{n \geq 0} a_n }[/math] una sèrie i [math]\displaystyle{ (n_k)_{k \geq 0} }[/math] una successió estrictament creixent de nombres naturals.
Definim [math]\displaystyle{ b_0 = a_0 + \cdots + a_{n_0} }[/math] i, si [math]\displaystyle{ k \gt 0, b_k = a_{n_{k-1}+1} + \cdots + a_{n_k} }[/math].
Aleshores, [math]\displaystyle{ \exists \sum_{n \geq 0} a_n \implies \exists \sum_{k \geq 0} b_k \text{ i } \sum_{n \geq 0} a_n = \sum_{k \geq 0} b_k }[/math]
El que estem fent és: [math]\displaystyle{ \sum a_n = \underbrace{(a_0 + a_1 + \cdots + a_{n_0})}_{b_0} + \underbrace{(a_{n_0+1} + \cdots + a_{n_1})}_{b_1} + \underbrace{(a_{n_1+1} + \cdots + a_{n_2})}_{b_2} + \cdots }[/math]
Demostració |
---|
∎
|
Observació: El recíproc és fals. Per exemple:
[math]\displaystyle{ \sum_{n \geq 0} (-1)^n = \begin{cases} (1-1)+(1-1)+(1-1)+\cdots=0 \\ 1-(1+1)-(1-1)-\cdots=1 \end{cases} }[/math]
Sèries de termes positius
Si una sèrie [math]\displaystyle{ \sum a_n }[/math] és de termes positius ([math]\displaystyle{ a_n \geq 0 }[/math]), aleshores la successió de sumes parcials és creixent, i doncs sempre té límit (finit o infinit).
[math]\displaystyle{ \sum_{n \geq 0} a_n = \lim s_n = \sup s_n = \left\{\begin{array}{ll} L \in [0, +\infty[ & \text{convergent} \\ +\infty & \text{divergent} \end{array}\right. }[/math]
Proposició: (criteri de comparació directa) Siguin [math]\displaystyle{ \sum a_n, \sum b_n }[/math] sèries de termes positius. Si [math]\displaystyle{ \exists n_0 \in \mathbb{N} \text{ tq } \forall n \geq n_0, a_n \leq b_n }[/math], aleshores [math]\displaystyle{ \sum_{k=n_0}^\infty a_k \leq \sum_{k=n_0}^\infty b_k }[/math]
Per tant: [math]\displaystyle{ \begin{array}{rcl} \sum b_k \text{ conv.} & \implies & \sum a_k \text{ conv.} \\ \sum a_k \text{ div.} & \implies & \sum b_k \text{ div.} \end{array} }[/math]
Demostració |
---|
Trivial: [math]\displaystyle{ \sum_{k=n_0}^n a_k \leq \sum_{k=n_0}^n b_k \implies \lim \sum_{k=n_0}^n a_k \leq \lim \sum_{k=n_0}^n b_k }[/math], ... ∎
|
La sèrie harmònica i la sèrie de Riemann
Definició: Anomenem sèrie harmònica generalitzada, o sèrie de Riemann de paràmetre [math]\displaystyle{ p \in \mathbb{R} }[/math], a la sèrie: [math]\displaystyle{ \sum_{n \geq 1}\frac{1}{n^p} }[/math]
Quan [math]\displaystyle{ p=1 }[/math], tenim la sèrie harmònica: [math]\displaystyle{ \sum_{n \geq 1}\frac{1}{n} }[/math]
Proposició: La sèrie de Riemann és convergent [math]\displaystyle{ \iff p\gt 1 }[/math]
Demostració |
---|
Utilitzarem l'associatitivitat i la comparació directa: [math]\displaystyle{ \sum_{n \geq 1} \frac{1}{n} = 1 + \frac{1}{2} + (\frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \cdots + (\frac{1}{2^{k-1}} + \cdots + \frac{1}{2^k}) + \cdots \\ \geq 1 + \frac{1}{2} + (\frac{1}{4} + \frac{1}{4}) + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}) + \cdots = \\ = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = + \infty }[/math]
[math]\displaystyle{ \sum_{n \geq 1} \frac{1}{n^p} = 1 + (\frac{1}{2^p} + \frac{1}{3^p}) + (\frac{1}{4^p} + \cdots + \frac{1}{7^p}) + \cdots \\ \leq 1 + (\frac{1}{2^p} + \frac{1}{2^p}) + (\frac{1}{4^p} + \cdots + \frac{1}{4^p}) = \\ = 1 + (\frac{1}{2^{p-1}}) + \frac{1}{2^{2(p-1)}} + \cdots + \frac{1}{2^{(n-1)(p-1)}} + ... }[/math] En aquest cas és una sèrie geomètrica de raó [math]\displaystyle{ \frac{1}{2^{p-1}} \lt 1 }[/math], així que pel criteri de comparació directa, [math]\displaystyle{ \sum\frac{1}{n^p}, p \gt 1 }[/math] és convergent.
Suposem [math]\displaystyle{ \sum \frac{1}{n} = s }[/math] convergent. Llavors [math]\displaystyle{ s = (1 + \frac{1}{2}) + (\frac{1}{3} + \frac{1}{4}) + \cdots \gt (\frac{1}{2} + \frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + \cdots = 1 + \frac{1}{2} + \frac{1}{3} + \cdots = s }[/math] Com [math]\displaystyle{ s \gt s }[/math] és una contradicció, en realitat la suposició que la sèrie fos convergent és errònia.∎
|
Proposició: (criteri de comparació en el límit) Siguin [math]\displaystyle{ \sum a_n, \sum b_n }[/math] sèries de termes estrictament positius, i suposem que [math]\displaystyle{ \exists \lim \frac{a_n}{b_n} = l \in [0, +\infty] }[/math]
Aleshores:
- Si [math]\displaystyle{ l \lt +\infty \text{: } \begin{array}{c} \sum b_n \text{ convergent} \implies \sum a_n \text{ convergent} \\ \sum a_n \text{ divergent} \implies \sum b_n \text{ divergent} \\ \end{array} }[/math]
- Si [math]\displaystyle{ l \gt 0 \text{: } \begin{array}{c} \sum a_n \text{ convergent} \implies \sum b_n \text{ convergent} \\ \sum b_n \text{ divergent} \implies \sum a_n \text{ divergent} \\ \end{array} }[/math]
- Si [math]\displaystyle{ 0 \lt l \lt +\infty }[/math]: les dues sèries tenen el mateix caràcter.
Demostració |
---|
Fixada [math]\displaystyle{ \epsilon \gt 0 }[/math], per definició de límit [math]\displaystyle{ \exists n_0 \text{ tq } n \geq n_0 \implies \frac{a_n}{b_n} \lt l + \epsilon \implies a_n \lt (l + \epsilon)b_n }[/math] Per comparació directa, queden demostrades les dues implicacions.
|
Exemple 1: [math]\displaystyle{ \sum_{n \geq 1} \frac{1}{n^2 + n} \text{ convergent} }[/math] |
---|
[math]\displaystyle{ \frac{1}{n^2 + n} \lt \frac{1}{n} \forall n \geq 1 }[/math] Com la part dreta de l'inequació és una sèrie de Riemann de paràmetre [math]\displaystyle{ p = 2 \lt 1 }[/math], és convergent, i pel criteri de comparació directa, això significa que la sèrie de l'esquerra és també convergent. |
Exemple 2: [math]\displaystyle{ \sum_{n \geq 1} \frac{1}{n^2 - n + 1} \text{ convergent} }[/math] |
---|
Comparació al límit amb [math]\displaystyle{ \sum \frac{1}{n^2} }[/math] [math]\displaystyle{ \frac{\frac{1}{n^2 - n + 1}}{\frac{1}{n^2}} \longrightarrow 1 \implies \text{les dues tenen el mateix caràcter} }[/math] [math]\displaystyle{ \sum \frac{1}{n^2} }[/math] és de Riemann amb paràmetre [math]\displaystyle{ p = 2 \gt 1 }[/math], així que és convergent, i per tant la sèrie original també ho és. |
Exemple 3: [math]\displaystyle{ \sum_{n \geq 0} \frac{1}{\sqrt{n+1}} \text{ divergent} }[/math] |
---|
[math]\displaystyle{ \frac{\frac{1}{\sqrt{n+1}}}{\frac{1}{\sqrt{n}}} \longrightarrow 1 \implies \text{les dues tenen el mateix caràcter} }[/math] [math]\displaystyle{ \sum \frac{1}{sqrt(n)} }[/math] és de Riemann amb paràmetre [math]\displaystyle{ p = \frac{1}{2} \lt 1 }[/math], així que és divergent, i per tant la sèrie original també ho és. |
Exemple 4: [math]\displaystyle{ \sum_{n \geq 0} \frac{1}{n!} \text{ convergent} }[/math] |
---|
Segons la mà dreta, [math]\displaystyle{ n! }[/math] creix més ràpidament que qualsevol potència de n. Aleshores, la mà esquerra diu: [math]\displaystyle{ n! \geq n^2 \: \forall n \geq 4 \implies \frac{1}{n!} \leq \frac{1}{n^2} \: \forall n \geq 4 }[/math], i per comparació directa, com [math]\displaystyle{ \sum \frac{1}{n^2} }[/math] és sèrie de Riemann de paràmetre [math]\displaystyle{ p = 2 \gt 1 }[/math] i per tant és convergent, la sèrie original també ho és. |
Lema: Sigui [math]\displaystyle{ \sum a_n }[/math] sèrie de termes positius.
- Suposem que [math]\displaystyle{ \exists n_0 \in \mathbb{N} \text{ i } r \lt 1 \text{ tq } n \geq n_0 \implies a_n^{^1/_n} \leq r }[/math]. Aleshores [math]\displaystyle{ \sum a_n \lt +\infty }[/math] (és convergent)
- Suposem que [math]\displaystyle{ \exists n_0 \in \mathbb{N} \text{ tq } n \geq n_0 \implies a_n^{^1/_n} \geq 1 }[/math]. Aleshores [math]\displaystyle{ \sum a_n = +\infty }[/math] (és divergent)
Demostració:
- [math]\displaystyle{ a_n \leq r^n \text{ sèrie geomètrica convergent } (r \lt 1) \underset{\text{comp. directa}}{\implies} \sum a_n \text{ convergent} }[/math]
- [math]\displaystyle{ a_n \geq 1 \implies \lim a_n \geq 1 \implies \text{ divergent} }[/math]∎
Proposició: (criteri de l'arrel de Cauchy) Sigui [math]\displaystyle{ \sum a_n }[/math] sèrie de termes positius tal que [math]\displaystyle{ \exists \lim a_n^{^1/_n} = \alpha }[/math]
- Si [math]\displaystyle{ \alpha \lt 1 }[/math] la sèrie convergeix.
- Si [math]\displaystyle{ \alpha \gt 1 }[/math] la sèrie divergeix.
Demostració |
---|
|
Lema: Sigui [math]\displaystyle{ \sum a_n }[/math] sèrie de termes estrictament positius.
- Suposem [math]\displaystyle{ \exists n_0 \in \mathbb{N} \text{ i } r \lt 1 \text{ tq } n \geq n_0 \implies \frac{a_{n+1}}{a_n} \leq r }[/math]. Aleshores la sèrie és convergent.
- Suposem [math]\displaystyle{ \exists n_0 \in \mathbb{N} \text{ i } r \lt 1 \text{ tq } n \geq n_0 \implies \frac{a_{n+1}}{a_n} \leq r }[/math]. Aleshores la sèrie és divergent.
Demostració:
- [math]\displaystyle{ \frac{a_{n+1}}{a_n} \leq r \implies \frac{a_{n+1}}{r} \leq a_n \implies \frac{a_{n+1}}{r^{n+1}} \leq \frac{a_n}{r^n} \leq \cdots \leq \frac{a_{n_0}}{r^{n_0}} := c \implies a_n \leq cr^n (n \geq n_0) }[/math]. El terme de la dreta és una sèrie geomètrica de raò [math]\displaystyle{ |r| \lt 1 }[/math] convergent, així que pel criteri de comparació directa, [math]\displaystyle{ \sum a_n }[/math] també ho és.
- [math]\displaystyle{ \frac{a_{n+1}}{a_n} \geq 1 \implies a_{n+1} \geq a_n \geq a_{n_0} \implies \lim a_n \neq 0 \implies \text{divergent} }[/math]∎
Proposició: (criteri del quocient de d'Alembert) Sigui [math]\displaystyle{ \sum a_n }[/math] sèrie de termes estrictament positius tal que [math]\displaystyle{ \exists \lim \frac{a_{n+1}}{a_n} = \alpha }[/math]
- Si [math]\displaystyle{ \alpha \lt 1 }[/math] la sèrie convergeix.
- Si [math]\displaystyle{ \alpha \gt 1 }[/math] la sèrie divergeix.
Demostració |
---|
|
Observació: Els criteris de l'arrel i del quocient no decideixen quan [math]\displaystyle{ \alpha = 1 }[/math]. Es compleix que [math]\displaystyle{ \frac{a_{n+1}}{a_n} \rightarrow 1 \implies a_n^{^1/_n} \rightarrow \alpha }[/math]
Per tant, si el criteri del quocient no decideix perquè el límit és 1, el criteri de l'arrel (més potent) tampoc decideix.
Proposició: (criteri de Raabe) (ha sortit en examens, ho enuncia per si de cas, però ho farem a problemes)
Sigui [math]\displaystyle{ \sum a_n }[/math] sèrie de termes estrictament positius. Suposem que [math]\displaystyle{ \exists \lim n(1 - \frac{a_{n+1}}{a_n}) = \alpha }[/math]. Aleshores:
- Si [math]\displaystyle{ \alpha \gt 1 }[/math] la sèrie convergeix.
- Si [math]\displaystyle{ \alpha \lt 1 }[/math] la sèrie divergeix.
Hi ha altres criteris que farem a problemes.
[math]\displaystyle{ \sum_{n \geq 0} \frac{x^n}{n!} \text{ convergent per a } x \geq 0 }[/math] |
---|
En realitat és convergent [math]\displaystyle{ \forall x \in \mathbb{R} }[/math]. Per demostrar-ho utilitzarem el criteri del quocient: [math]\displaystyle{ \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \frac{x}{n+1} \longrightarrow 0 \lt 1 \implies \text{convergent} }[/math] |
[math]\displaystyle{ \sum_{n \geq 1} \alpha^{n + \sqrt{n}} \begin{cases} \text{convergent} & \text{si } 0 \leq \alpha \lt 1 \\ \text{divergent} & \text{si } \alpha \geq 1 \end{cases} }[/math] |
---|
Utilitzarem el criteri de l'arrel: [math]\displaystyle{ (\alpha^{n + \sqrt{n}})^{1/n} = \alpha^{1 + \frac{1}{\sqrt(n)}} \longrightarrow \alpha \implies \begin{cases} \text{convergent} & \text{si } \alpha \lt 1 \\ \text{divergent} & \text{si } \alpha \gt 1 \\ \text{no decideix} & \text{si } \alpha = 1 \implies \sum_{n \geq 1} 1 = + \infty \text{ (divergent)} \end{cases} }[/math] |
[math]\displaystyle{ \sum_{n \geq 0}\frac{n}{n^2 + 1} }[/math] |
---|
El criteri del quocient no decideix, però com és semblant a [math]\displaystyle{ \frac{1}{n} }[/math], és divergent. |