Tema 1. Sèries numèriques i integrals impròpies

From Potatopedia
Revision as of 17:37, 15 September 2018 by Avm99963 (talk | contribs) (Fet fins propietat d'associativitat (falta demo))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definició: Una sèrie de nombres reals és un parell de successions [math]\displaystyle{ (a_n)_{n \geq 0}, (s_n)_{n \geq 0} }[/math] relacionades per [math]\displaystyle{ s_n = \sum_{k=0}^n a_k }[/math] on:

  • [math]\displaystyle{ a_n }[/math] és el terme n-èssim
  • [math]\displaystyle{ s_n }[/math] és la suma parcial n-èssima

Observació: Les sumes parcials determinen els termes:

[math]\displaystyle{ a_0 = s_0 \\ a_n = s_n - s_{n-1} \quad (n \geq 1) }[/math]

Definició: La suma de la sèrie és el límit (si existeix) de les sumes parcials n-èssimes: [math]\displaystyle{ s = \lim s_n = \lim_{n \rightarrow \infty} \sum_{k=0}^n a_k }[/math]

Es representa per [math]\displaystyle{ s = \sum_{n \geq 0} a_n = \sum_{n=0}^\infty a_n }[/math]

Aquesta notació també s'utilitza per representar la sèrie.

Definició: Una sèrie es diu convergent o divergent segons que ho sigui la successió de sumes parcials:

  • Convergent: [math]\displaystyle{ \sum_{k \geq 0} a_k \in \mathbb{R} }[/math]
  • Divergent: [math]\displaystyle{ \sum_{k \geq 0} a_k = \pm \infty }[/math]
  • Oscil·lant: [math]\displaystyle{ \lim_{n \rightarrow \infty} \sum_{k=0}^n a_k }[/math] no existeix

La sèrie geomètrica

Definició: Donat [math]\displaystyle{ r \in \mathbb{R} }[/math], la sèrie geomètrica de raó r és [math]\displaystyle{ \sum_{n \geq 0}r^n }[/math]

Proposició: La sèrie geomètrica és convergent si [math]\displaystyle{ |r| \lt 1 }[/math].

  • En tal cas, la seva suma val [math]\displaystyle{ \sum_{n \geq 0}r^n = \frac{1}{1-r} }[/math]
  • Si [math]\displaystyle{ r \geq 1 }[/math], la sèrie és divergent.
  • Si [math]\displaystyle{ r \leq 1 }[/math], la sèrie és oscil·lant.
Demostració
[math]\displaystyle{ s_n = 1 + r + r^2 + \cdots + r^n = \left\{\begin{array}{ll} n+1 & \text{si } r = 1 \\ \frac{r^{n+1} - 1}{r - 1} & \text{si } r \neq 1 \end{array}\right. }[/math]

Exemple: [math]\displaystyle{ \sum_{n \geq 1}\frac{1}{n(n+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots = 1 }[/math]

[math]\displaystyle{ s_1 = \frac{1}{2} \\ s_2 = \frac{2}{3} \\ s_3 = \frac{3}{4} \\ \vdots \\ s_n = \frac{n}{n+1} \text{?} }[/math]

Proposicions i propietats de les sèries

Proposició: [math]\displaystyle{ \sum a_n \text{ convergent} \implies \lim a_n = 0 }[/math] (condició necessària de convergència)

Demostració
[math]\displaystyle{ a_n = s_n - s_{n-1} \implies \lim a_n = \lim s_n - \lim s_{n-1} = s - s = 0 }[/math]

Proposició: (criteri de Cauchy per a sèries) Una sèrie [math]\displaystyle{ \sum a_n }[/math] és convergent sii [math]\displaystyle{ \forall \epsilon \gt 0, \exists n_0 \text{ tq } m \gt n \geq n_0 \implies |s_m - s_n| = |a_{n+1} + \cdots + a_m| \lt \epsilon }[/math]

Demostració
És el criteri de Cauchy aplicat a la successió de sumes parcials (s_n)

Propietats

  • Linealitat: trivial (suma de termes: suma de sumes; escalació de termes: escalació de la suma)

La convergència d'una sèrie només depèn de la "cua" de la sèrie.

Proposició: Si dues successions [math]\displaystyle{ (a_n), (b_n) }[/math] són iguals llevat d'un nombre finit de termes, aleshores les dues sèries [math]\displaystyle{ \sum a_n \text{ i } \sum b_n }[/math] tenen el mateix caràcter (les dues són convergents, divergents o oscil·lants).

Demostració

Les dues són iguals llevat d'un nombre finit de termes, o sigui, a partir d'algun [math]\displaystyle{ n_0 }[/math] les dues successions són iguals.

Per tant, si [math]\displaystyle{ n \geq n_0 \quad \begin{array}{l} \sum_{k=0}^n a_k = \overbrace{\sum_{k=0}^{n_0 - 1} a_k}^{A} + \sum_{k=n_0}^n a_k \\ \sum_{k=0}^n b_k = \underbrace{\sum_{k=0}^{n_0 - 1} b_k}_{B} + \sum_{k=n_0}^n b_k \end{array} \underset{a_k = b_k \text{ si } k \geq n_0 \\ \text{i fem el límit}}{\implies} \begin{array}{l} \lim \sum_{k=0}^n a_k = A + \lim \sum_{k=n_0}^n a_k \\ \lim \sum_{k=0}^n b_k = B + \lim \sum_{k=n_0}^n a_k \end{array} }[/math]

Proposició: (associativitat) Sigui [math]\displaystyle{ \sum_{n \geq 0} a_n }[/math] una sèrie i [math]\displaystyle{ (n_k)_{k \geq 0} }[/math] una successió estrictament creixent de nombres naturals.

Definim [math]\displaystyle{ b_0 = a_0 + \cdots + a_{n_0} }[/math] i, si [math]\displaystyle{ k \gt 0, b_k = a_{n_{k-1}+1} + \cdots + a_{n_k} }[/math].

Aleshores, [math]\displaystyle{ \exists \sum_{n \geq 0} a_n \implies \exists \sum_{k \geq 0} b_k \text{ i } \sum_{n \geq 0} a_n = \sum_{k \geq 0} b_k }[/math]