Tema 3. Funcions contínues
En aquest tema tractarem les funcions exponencials, logarítmiques, trigonomètriques i hiperbòliques.
Funcions exponencials
[math]\displaystyle{ a\gt 0, a \in \mathbb{R} }[/math]
[math]\displaystyle{ n \in \mathbb{Z}, a^n }[/math]
[math]\displaystyle{ n \in \mathbb{Z}, a^n \quad a^{-1}=\frac{1}{a} }[/math]
[math]\displaystyle{ \frac{p}{q}=n \in \mathbb{Q}, a^n = ? \rightarrow x = \sqrt[q]{a^p} \Rightarrow x^q = a^p }[/math]
[math]\displaystyle{ r \in \mathbb{R}, a^r = ? }[/math]
Teorema:
[math]\displaystyle{ \forall a \in \mathbb{R}, a\gt 0, }[/math] existeix una única funció contínua definida a [math]\displaystyle{ \mathbb{R} }[/math] [math]\displaystyle{ (f:\mathbb{R} \rightarrow \mathbb{R}) }[/math] tal que:
- [math]\displaystyle{ f(x+y)=f(x)\cdot f(y) \quad (a^{x+y}=a^x \cdot a^y) }[/math]
- [math]\displaystyle{ f(1)=a }[/math]
Es pot comprovar que [math]\displaystyle{ f(\frac{p}{q}) = a^\frac{p}{q} \forall \frac{p}{q} \in \mathbb{Q} }[/math]. Llavors escrivim [math]\displaystyle{ f(x) = a^x \forall x \in \mathbb{R} }[/math] i s'anomena funció exponencial de base "a".
Propietats
- [math]\displaystyle{ a^0 = 1; a^1 = a }[/math]
- [math]\displaystyle{ a^{x+y}=a^x \cdot a^y }[/math]
- [math]\displaystyle{ (ab)^x = a^x \cdot b^x }[/math]
- [math]\displaystyle{ (a^x)^y = a^{x \cdot y} }[/math]
- [math]\displaystyle{ 1^x = 1 \forall x }[/math]
Gràfica de [math]\displaystyle{ a^x }[/math]
|
One editor is actually working in this article or section. For this reason the article may not be completely accurate and there may be deficiencies in its format. You are welcome to assist in its construction by editing it as well, but before making major corrections contact them in their talk page or in the talk page of the article to be able to coordinate the editing. |
Obs: [math]\displaystyle{ a^x }[/math] és una funció bijectiva (si [math]\displaystyle{ a \neq 1 }[/math]) i [math]\displaystyle{ \begin{array}{rl} f:&\mathbb{R} \longrightarrow (0, +\infty) \\ & x \longmapsto a^x=y\end{array} \implies \text{ Té inversa: } \begin{array}{rl} g: & (0, +\infty) \longrightarrow \mathbb{R} \\ & y \longmapsto x \end{array} }[/math]
La funció inversa a l'exponencial s'anomena logaritme en base "a".
Funcions logarítmiques
[math]\displaystyle{ \log_a: (0, +\infty) \longrightarrow \mathbb{R} }[/math]
Propietats
- [math]\displaystyle{ \log_a 1 = 0; \log_a a = 1 }[/math]
- [math]\displaystyle{ \log_a (xy) = \log_a(x) + \log_a(y) }[/math]
- [math]\displaystyle{ \log_a (x^y) = y \cdot \log_a x }[/math]
La funció inversa és la simètrica respecte l'eix de simetria [math]\displaystyle{ y=x }[/math].
Propietats interessants de les funcions exponencials i les logarítmiques
Quin "y" satisfà [math]\displaystyle{ \frac{dy}{dx} = y(x) \mid y(0) = 1 }[/math]?
[math]\displaystyle{ y(x) = e^x \cdot k }[/math], que és un cas particular de les funcions exponencials, on la base és "e": el nombre d'Euler.
La definició del nombre d'Euler es fa mitjançant en següent límit: [math]\displaystyle{ e=\lim_{m \rightarrow +\infty}(1+\frac{1}{m})^m }[/math]
Qualsevol funció exponencial [math]\displaystyle{ a^x }[/math] es pot expressar en termes de la funció exponencial amb base "e": [math]\displaystyle{ a^x = e^{x \cdot \log a} }[/math]